Abstract

An X-ray free-electron laser (XFEL) produces short pulses (10–50 fs) of intense (mJ μm−2 at 120 Hz) X-rays, with high transverse coherence. Such pulses open novel spectroscopic and scattering methods for static and time-resolved studies of matter, and many are based on X-ray crystallography. With serial femtosecond crystallography, the XFEL allows high-resolution structural determination on sub-micron protein crystals. Although the XFEL pulse is destructive, its short duration ensures that effectively undamaged material is probed. Coherent scattering features provide information on the physical crystal form and may assist in determining the crystallographic phase. By introducing synchronized optical laser pulses, one can perform ‘pump-probe’ measurements of dynamic properties, on the sub-picosecond timescale. These include photo-initiated structural modifications in biomolecules, photo-excited lattice vibrations and photo-driven structural phase transitions. As with synchrotron radiation, the XFEL wavelength can be tuned to atomic resonances, allowing time-resolved resonant-diffraction measurements, which are particularly sensitive to selected order parameters (lattice, charge, spin, and orbital) in magnetic or correlated electron materials. Finally, it is anticipated that the special properties of XFEL pulses will allow entirely new types of X-ray scattering measurements, such as ptychographic crystallography on 2D bio-crystals, correlation-function determination of nanoparticle geometry and nonlinear crystallographic mixing of optical and X-ray pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.