Abstract

The crystallography of brittle fracture and deformation twinning in ferritic steels is difficult to study experimentally, because of its three-dimensional aspects. The present paper reports the development of methodologies to study the phenomenon via customisation of various electron backscatter diffraction and SEM routes. It is shown that both direct (from the fracture surface) and indirect (from an adjacent polished side) measurements yield valuable information on crystallographic aspects of the fracture processes. Specifically, brittle fracture in three ferritic steels is studied: a C–Mn weld metal, a low alloy Mn–Mo–Ni steel similar to grade A533 and an ultralow carbon (0·002 wt-%C, 0·058 wt-%P) steel plate. The main conclusions resulting from development of the experimental techniques are that cleavage fracture occurs only on {001} planes, and that intergranular accommodation is present at the fracture surface. Further observations suggest that a cleavage side crack, initially deflected by a deformation twin, eventually blunts at the intersection of two deformation twins. This provides a mechanism for limiting the mean length of microcracks during brittle fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.