Abstract

Using a facile hydrothermal method, we have successfully synthesized carbon doped (C-doped) ZnO nanorods with standard hexagonal column shapes. To modify their photocatalytic activities by tailoring the surfaces, a post etching process under ammonia atmosphere was used, and these nanorods could be converted into hexagonal porous nanorods (at 750°C), and porous nanorods with corrugated surface structures covered by alternant (112¯1) and (112¯1¯) planes (at 850°C and 950°C). Energy Dispersion Spectrum and Raman spectra are used to carefully study the concentration and vibration modes of the doped carbon species. It explicitly shows that there is a carbonation process around 750°C and some organic aldehyde molecules transform into carbon with flake form. After investigating their photoluminescence spectra and photocatalytic activities, we conclude that an appropriate etching temperature is the key point to obtain high photocatalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.