Abstract

The carbide precipitation in 1Cr-1Mo-0.25V steel subjected to low-cycle fatigue (LCF) deformation at room and elevated temperatures was investigated by means of transmission electron microscopy. Based on the electron diffraction analyses, three types of carbides, M3C-type cementite, M2C, and MC, were identified in normalized and subsequently tempered specimen. The cyclic deformation at high temperature led to the following changes in morphology and composition of carbides: the spheroidization of cementite, the enhanced precipitation of H-carbide, the formation of M2C and M23C6 at lath or prior-austenite grain boundaries, and the enrichment of Mo in most of carbides. Particular attention has been paid to the crystallographic orientation relationship (OR) between the cementite and the ferrite (α) matrix. The combined analyses based on the simulation of diffraction patterns and the trace analyses of habit plane on stereographic projection have shown that most cementite was related to the α matrix in accordance with Bagaryatskii OR, but in some cases, the Isaichev OR also was observed in the lath interior after LCF deformation at elevated temperature. In addition, M2C obeyed the Burgers–Jack OR, and MC was related to the α by the Baker–Nutting OR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call