Abstract

Bottom-up approaches for producing bulk nanomaterials have traditionally lacked control over the crystallographic alignment of nanograins. This limitation has prevented nanocrystal-based nanomaterials from achieving optimized performances in numerous applications. Here we demonstrate the production of nanostructured Bi xSb2- xTe3 alloys with controlled stoichiometry and crystallographic texture through proper selection of the starting building blocks and the adjustment of the nanocrystal-to-nanomaterial consolidation process. In particular, we hot pressed disk-shaped Bi xSb2- xTe3 nanocrystals and tellurium nanowires using multiple pressure and release steps at a temperature above the tellurium melting point. We explain the formation of the textured nanomaterials though a solution-reprecipitation mechanism under a uniaxial pressure. Additionally, we further demonstrate these alloys to reach unprecedented thermoelectric figures of merit, up to ZT = 1.96 at 420 K, with an average value of ZTave = 1.77 for the record material in the temperature range 320-500 K, thus potentially allowing up to 60% higher energy conversion efficiencies than commercial materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call