Abstract

The role of both laser pulse length and duty cycle in controlling the grain size and crystallographic texture of diode laser-deposited Waspaloy powder is investigated. Thin-walled test structures of Waspaloy have been produced using a range of pulse parameters and analyzed by means of scanning electron microscopy and electron backscatter diffraction. Results have been correlated with a simple analytical model of the effect of the laser pulse on the substrate temperature and melt-pool geometry in order to help explain the trends observed. Findings show that pulse parameters have a marked effect on the resulting grain morphology and crystallographic orientation. Modelling has indicated that this arises because the microstructure is highly dependent on the melt-pool geometry, particularly the inclination angle of the melt-pool boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.