Abstract

Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (~0.1 wt.%) for various titanium alloys e.g. Ti–6Al–4V. The deformation behaviour of such an alloy Ti–6Al–4V–0.1B is investigated in the (α + β) phase field and compared against that of the base alloy Ti–6Al–4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of α lamellae in near α and softening via globularization of α lamella in near β phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti–6Al–4V–0.1B alloy. The compression texture of both the alloys carry signature of pure α phase defamation at lower temperature and α→β→α phase transformation near the β transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti–6Al–4V–0.1B alloy at comparatively lower temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call