Abstract

Strong crystallographic texture and high performance of Nd3.8Dy0.7Pr3.5Fe86Nb1B5 (containing 30% -Fe) nanocomposite permanent magnetic material was prepared by direct rapid solidification. X-ray diffraction analysis and magnetic measurement indicated that the ribbons had preferential orientation. The easy magnetization direction switched from perpendicular to the ribbon plane to parallel to the ribbon plane direction as the wheel speed increased from 10 m/s to 30 m/s. The multigrain domains were observed by scan probe microscope (SPM) in the ribbons prepared at wheel speed of 1030 m/s. The Henkel plots were employed to investigate the interactions of the grains in the samples. A very fine and uniform microstructure with the average grain size about 16 nm was obtained in the sample prepared at wheel speed of 30 m/s. The sample consisted of highly oriented hard magnetic phase (Nd,Dy,Pr)2(Fe,Nb)14B and soft magnetic phase -Fe. High performance of Br=1.29 T, Mr/Ms= 0.76 and (BH)max=158.4 kJ/m3 was achieved due to the strong crystallographic texture, fine and homogeneous microstructure and enhancement of the exchange coupling between the soft and hard magnetic phases in this sample. The mechanism of the formation of the crystallographic texture and the multigrain domains was also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.