Abstract

Copper-containing nitrite reductases (CuNIRs) are multifunctional enzymes that catalyse the one-electron reduction of nitrite (NO2-) to nitric oxide (NO) and the two-electron reduction of dioxygen (O2) to hydrogen peroxide (H2O2). In contrast to the mechanism of nitrite reduction, that of dioxygen reduction is poorly understood. Here, results from anaerobic synchrotron-radiation crystallography (SRX) and aerobic in-house radiation crystallography (iHRX) with a CuNIR from the thermophile Geobacillus thermodenitrificans (GtNIR) support the hypothesis that the dioxygen present in an aerobically manipulated crystal can bind to the catalytic type 2 copper (T2Cu) site of GtNIR during SRX experiments. The anaerobic SRX structure showed a dual conformation of one water molecule as an axial ligand in the T2Cu site, while previous aerobic SRX GtNIR structures were refined as diatomic molecule-bound states. Moreover, an SRX structure of the C135A mutant of GtNIR with peroxide bound to the T2Cu atom was determined. The peroxide molecule was mainly observed in a side-on binding manner, with a possible minor end-on conformation. The structures provide insights into dioxygen chemistry in CuNIRs and hence help to unmask the other face of CuNIRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.