Abstract

The development of crystallographic preferred orientation in a single-layer buckling assembly has been numerically simulated using an explicit, finite difference computer code, FLAC. The model treats the materials in the single competent layer and the embedding less competent matrix as a polycrystalline aggregate with one slip system, which exhibits elastic-perfectly-plastic behaviour, and assumes dislocation glide as the dominant strain accommodation mechanism. The results show that the preferred orientation of slip planes is much better developed in the less competent matrix than in the buckled competent layer. This correlates with the low strains developed in the layer and the high strains in the matrix. The competency contrast in the model also influences the fabric development, since changing the contrast effectively alters the final buckle size and strain distributions. The patterns of the preferred orientations vary throughout the assembly, showing different orientation relationships to the fold axial plane. The slip planes are generally preferably oriented approximately parallel to the local principal extension direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.