Abstract

An indicator-based crystallographic phase retrieval method has been developed for diffraction data of bicontinuous cubic phases of lyotropic liquid crystals. Such liquid crystals have large structural disorder; the number of independent Bragg reflections that can be observed is limited. This paper proposes two indicators to identify plausible combination(s) of crystallographic phases, i.e. electron-density distribution. The indicators are based on the characteristics of the liquid crystals: amphiphilic molecules diffuse mainly in the direction parallel to polar-nonpolar interfaces and the electron density in the direction parallel to the interfaces is averaged. One indicator is the difference between the maximum and minimum electron density, and the other is calculated from the Hessian matrix of the electron density. Using test data, the electron densities were calculated for all possible phase combinations and indicators were obtained. The results indicated that the electron densities with the minimum indicators were close to the true electron density. Therefore, this method is effective for phase retrieval. The accuracy of the phase retrieval decreased when the volume fraction of the region including the triply periodic minimal surface increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call