Abstract
Alternating bright/dark anomalous subunitcell contrast in HREM images along or near the close-packed direction of 6H-SiC, Ti5Si3, α-Ti, and 4H-SiC, all of which are hexagonal, was examined using computer-generated crystal models, HREM image simulations, and digital diffractograms from the corresponding experimental images. The primary variables were crystal tilt and thickness. Crystal model projections showed that the scattering potential was smeared anisotropically within the unit cells by small crystal tilts, which reproduced the experimentally observed anomalous subunit-cell contrast modulations in the corresponding simulations. The effect increased with thickness, but it did not occur in exact zone axis simulations for any crystal thickness. Structural considerations indicated that the contrast resulted from tilt-induced violations of Gjonnes-Moodie dynamical extinctions and excitation of kinematically forbidden reflections in the imaging zone. Digital diffractograms from experimental HREM images confirmed their presence in the imaging zone diffraction patterns. These effects were absent in HREM images from cubic crystals in this material system because the structurally induced requisite kinematically forbidden reflections do not occur in the imaging zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.