Abstract

In this study, laser powder bed fusion (LPBF) was used for the fabrication of an interstitial-strengthened high entropy alloy (iHEA), Fe49.5Mn30Co10Cr10C0.5 (at.%). The as-fabricated iHEA possesses excellent strength-ductility synergy during tensile loading, with fracture strength reaching up to 1109 MPa at 37% engineering strain. Electron backscatter diffraction (EBSD) and high energy synchrotron X-ray diffraction were used to evaluate the microstructural characteristics of the material. In-situ EBSD analysis during uniaxial tensile testing was performed to unveil the deformation mechanisms. Moreover, crystallographic orientation-specific micropillar compression tests were conducted to determine how the grain deformation characteristics differ between orientations. Due to the activation of multiple slip systems and the homogeneous plastic flow, the [111] orientation demonstrated a higher yield strength and continuous work hardening rate. This research helps in clarifying grain orientation-specific contributions to the bulk mechanical response of additively manufactured HEA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.