Abstract

As-solidified structure of an ingot is composed of the chill, columnar and equiaxed zones. The whole solidified structure is strongly affected by the chill crystals. Some initial solidification grains have been observed on the ingot surface and thought to be traces of the nucleation point. The aim of this study is, therefore, to develop the experiment technique to make one ‘grain’ and to crystallographically investigate the initial solidification grain using EBSD analysis. In order to start solidification at a very specified position, a small metallic protrusion was installed on an insulating plate. Al-6 wt%Si alloy was melted at 800 °C and was poured on the metallic protrusion. In this study, the amount of protrusion was varied to investigate the growth mechanism of the initial solidification grain. The longitudinal cross section of the specimen was observed by an optical microscope, a scanning electron microscope. The starting position of solidification was the area that was on the metallic protrusion. In this initial solidification grain, it was difficult to observe the dendritic structure. The shape of this grain was about hemispherical. The grain area seemed to increase with increasing the amount of protrusion. The results of EBSD analysis showed that almost all initial solidification grains were composed by several crystals. The reason of this is that the nucleation frequency may increase with the amount of protrusion. The dendrite grew radially from the initial solidification grain continuously. The crystallographic structure was also continuous on the boundary of the initial solidification grain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call