Abstract

To get an idea about the most probable microporous supramolecular environment in the gel state, gelator molecule 1 has been crystallized from its gelling solvent (dimethylformamide). Crystal structure analysis of 1 shows a strong π···π stacking interaction between the electron-deficient pentafluorophenyl ring and electron-rich naphthyl ring. The gelling solvent situated in the "molecular pocket" stitches the gelators through weak H-bonding interactions to facilitate the formation of an organogel. Scanning electron microscopy analysis exhibits a ribbonlike fibrous morphology that resembles the supramolecular arrangement of 1 in its crystalline state, as evidenced by powder X-ray diffraction. In the presence of external stimuli (tetrabutylammonium fluoride), the organogel of 1 disassembles into sol. This sol-gel transformation phenomenon has been explained on the basis of X-ray single-crystal analysis. Single crystals obtained from the sol state show that naphthylic -OH of 1 gets deprotonated, resulting in C-C bond rotation that plays a major role in the sol-gel transformation. Gelator 1 exhibits weak green fluorescence in the gel state, whereas it shows highly intense yellow fluorescence in the sol state. Furthermore, a reversible sol-gel transformation associated with changes in the spectroscopic properties has been observed in the presence of acids and fluoride ions, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.