Abstract

The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on >300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In the latter case, finite element analysis reveals that TGCISCC will arrest at GBs without sufficient mechanical stress, favorable crystallographic orientations, or crack tip corrosion. GB type does not play a significant role in determining TGCISCC cracking behavior nor susceptibility. TGCISCC crack behaviors at GBs are discussed in the context of the competition between mechanical, crystallographic, and corrosion factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.