Abstract

In this paper, we explore the morphological evolution during two-phase growth in the Sn-Zn eutectic system, which has a particularly low volume fraction of the minority Zn phase. The reason for this choice is its exotic nature, as even with such a low volume fraction, the reported morphology is “broken-lamellar,” in contrast to the usually expected hexagonal arrangement of Zn rods in the Sn matrix. Thus, the main objective of the study is to investigate the reasons behind this phenomenon. We begin by presenting experimental results detailing the morphology and crystallography of the eutectic microstructures under various combinations of thermal gradients and velocities in directional solidification conditions. Based on the crystallography and further specially designed experiments we find that the solid–solid interface between the Sn and Zn crystal is anisotropic. On the basis of the results, we propose a hypothesis that the presence of solid–solid interfacial energy anisotropy leads to the formation of predominantly broken-lamellar structures, even when the minority fraction is significantly low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.