Abstract

The crystallography of lenticular martensite, which formed in coarse austenite grains (size about 80μm) after subzero treatment at −196°C (liquid nitrogen) for different holding times, was investigated using electron backscatter diffraction (EBSD). For the sample treated with 15min of isothermal holding, more than 50 martensite plates (with a thickness of larger than 1μm) that formed within a coarse austenite grain were employed to obtain the pole figures. The pole figures clearly indicated that the individual plate of lenticular martensite approximately adopted the Kurdjumov–Sachs (K–S) orientation relationship with respect to the austenite matrix. For the sample treated with 30s of isothermal holding, a few martensite plates that formed in variant pairings in a coarse austenite grain were analyzed. The results showed that zigzag couplings (including spear couplings), the major product of plate martensite, had an absolute dominance of a specific variant pair (V1/V17). The orientation gradient within a lenticular martensite plate was also measured using convergent beam electron diffraction (CBED). The evidence strongly suggests that the spread in diffracted intensity within pole figures is related to the misorientation gradient within the lenticular martensite plate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.