Abstract

Prussian blue analogues (PBAs) have attracted great interests due to their stable and open framework structures as novel electrode materials in rechargeable sodium-ion batteries (SIBs). However, Na+ diffusion within electrode materials not only relates to many confined spaces formed by lattice frameworks for Na-ion storage but also highly involves with Na+ migration channel generated by lattice periodic arrangement. In this work, the correlation between PBAs crystallinity and Na+ insertion/extraction properties were systematically investigated. High-crystallized nickel hexacyanoferrate (NiHCF-h) exhibits a fast Na-ion migration process with a high diffusion coefficient of 8.1 × 10−10 cm−2 s−2, and a high capacity retention of 73.7% at 4.25 A g−1. Even crystal size is six times larger than low-crystallized nickel hexacyanoferrate (NiHCF-l), the high-crystallized NiHCF-h shows a faster Na+ insertion/extraction process. The basic structural characterization and pair distribution function (PDF) analysis show that NiHCF-h has a long-range lattice periodicity, enabling Na ions transfer more easily through migration channels. This demonstrates that the crystallinity of PBAs is an extremely important factor in ionic migration process, even with proved vacancies and H2O molecules in PBAs framework structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.