Abstract

Nanotechnology started a new era in research and continuous escalations due to its potential applications. In modern optoelectronics, Pb additive nano-chalcogenides are becoming promising materials. For a memory and switching material, the thermal stability and glass-forming ability are vital, and the glass should be thermally stable from a technological point of view. This research article investigates the thermal behaviour of bulk (Se80Te20)94-xGe6Pbx (x = 0, 2, 4 and 6) samples synthesized using the melt quench procedure non-isothermal differential scanning calorimetry at four heating rates from 5 to 20°Cmin-1. Further, the overall crystallization study, which includes thermal stability, ease of glass formation, fragility, glass relaxation and glass-crystallization transformation kinetics of investigated alloys using different empirical formalisms, is reported and discussed. Compositional and heating rate dependence of recorded characteristic temperatures and other deduced parameters of reheated alloys are also discussed. The correlation between deduced parameters is also established to define the utility of these materials in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.