Abstract

Poly(trimethylene terephthalate) (PTT)/silica nanocomposite films were successfully fabricated using a novel sol–gel approach. The synthesis of these nanocomposites is being carried out by hydrolysis and condensation of tetraethoxysilane using trifluoroacetic acid with a small amount of water. The scanning electron microscopy and zetasizer result showed that the silica particles with a size range of 80–100 nm were homogeneously dispersed in the PTT matrix. The effect of different amounts of silica on crystallization of PTT was investigated using X-ray diffraction, differential scanning calorimetry (DSC), and optical microscopy. Polarized light microscopic results revealed that the spherulite size gradually decreased with increasing silica loading and increased with crystallization temperature for a given nanocomposite during isothermal melt crystallization. PTT with a small amount of SiO2 melt crystallized at low temperatures showed banded spherulites. DSC results revealed that nonisothermal cold crystallization temperature decreased with silica content, whereas no significant change in nonisothermal melt crystallization behavior was observed with silica content. The crystallinity of isothermally melt crystallized PTT increased with both crystallization temperature and silica loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call