Abstract
AbstractPerovskite materials are considered as potential materials suitable for flexible wearable displays due to their excellent optoelectronic properties and flexibility. However, the brittleness of conventional ITO electrodes, as well as the poor crystallization of perovskite on flexible substrates, have hindered the development in flexible perovskite light‐emitting diodes (PeLEDs). Herein, a flexible PeLED based on a novel transparent electrode WO3/Au/WO3 (WAW), combined with the adjustment method of incorporation of polymer [polyethylene oxide‐polypropylene oxide‐polyethylene oxide triblock copolymer (P123)], is proposed to assist crystallization and defect passivation. The strong anchoring effect between P123 and perovskite accelerates the nucleation and crystallization process of perovskite films based on flexible substrates (shortened from 10 min to 1 min), induces the formation of uniform and small‐sized perovskite grains, and passivates non‐radiation defects caused by poor crystal quality. As a result, a high‐performance green PeLED with a maximum external quantum efficiency (EQE) of 14.45% is obtained. The corresponding flexible PeLED displays a maximum EQE of 11.9%, and it can keep a 96.5% original current efficiency after bending for 1000 cycles. This work will provide feasible guidance for the design and manufacture of high‐performance flexible all‐inorganic PeLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.