Abstract

The development of structural hierarchy on various length scales during crystallization process is ubiquitous in biological systems and is also observed in synthetic nanomaterials. The driving forces for the formations of complex architectures range from local interfacial interactions, that modify interfacial speciation, local supersaturation, and nucleation barriers, to macroscopic interparticle forces. Although it is enticing to interpret the formation of hierarchical architectures as the assembly of independently nucleated building blocks, often crystallization pathways follow monomer-by-monomer addition with structural complexity arising from interfacial chemical coupling and strongly correlated fluctuation dynamics in the electric double layers. Here, the mechanism of the development of structural hierarchy through heterogeneous nucleation, coupled interfacial nucleation and assembly, and oriented attachment of independently nucleated particles is discussed. The emphasis is made on the discussion of the underlying interfacial forces and chemical coupling that drives crystallization pathways towards the formation of structural hierarchy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.