Abstract

AbstractPLZT, a ferroelectric material with a high quadratic electro-optic coefficient, is combined with silicon technology via chemical vapor deposition to enable the realization of Si/PLZT spatial light modulators. Laser crystallization is required to produce device quality silicon deposited on PLZT. The critical issues in the laser crystallization are (i) achieving crystallization in the absence of a good seed, and (ii) preventing damage to the PLZT. To prevent PLZT damage during the laser heating, a 3.5 μm silicon dioxide layer is used as a thermal buffer between the silicon and the PLZT and the effective scanning time is shortened to 100 μs. A double humped cw argon ion laser with a shaped beam is used to achieve successful crystallization with good surface smoothness and large grain size. This technology and devices fabricated on these samples will be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.