Abstract

An investigation was carried out on the crystallization process of poly(l-lactid acid) by dielectric relaxation spectroscopy and atomic force microscopy. Experimental results were generated by dielectric relaxation spectroscopy over a wide range of frequency and temperature in both the wholly amorphous state and during crystallization. The variation of the average relaxation time was studied during crystallization at 80 degrees C and the temperature dependence of this relaxation time for wholly amorphous and crystallized samples was analysed. This behaviour was modelled by Havriliak-Negami and Vogel-Fulcher equations. The sensitivity of the segmental dynamics to the degree of crystallinity was analysed, taking into account the relaxing segments and the thickness of the amorphous layer between lamellae. The morphologies obtained during crystallization processes at 80, 130 and 150 degrees C were monitored by atomic force microscopy at both the lamellar level and by analysing the multilayered superstructures formed. Hedrites, intermediate structures between single lamellar crystals and mature spherulites, were found to appear at the highest temperatures, whereas no evidence of hedrites was found at 80 degrees C, the spherulites seemed to be constructed from a framework of individual dominant lamellae that splay apart and branch. Complementary to the atomic force microscopy study, the evolution of the obtained morphologies was also followed by optical microscopy. Supporting evidence about the thermal behaviour of the polymers was obtained with differential scanning calorimetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call