Abstract

AbstractThe overall rate of crystallization of isotactic polystyrene from dilute solutions, 1% by weight, in trans‐decalin and benzyl alcohol was studied as a function of temperature using dilatometry. These solvents were chosen because the dissolution temperatures of crystalline isotactic polystyrene are practically the same in both solvents. The overall rate of crystallization as a function of crystallization temperature showed a maximum in both solvents at about 50°C. At lower crystallization temperatures the rate of crystallization is much lower. The overall rate of crystallization of isotactic polystyrene in benzyl alcohol is far larger than in trans‐decalin at the same undercooling throughout the temperature range, which is in apparent contradiction to present crystallization theories. At very large undercooling (Tc lower than about 0°C) the solutions of isotactic polystyrene in both solvents quickly become “rigid” gels. Surface replicas of freeze‐etched gels indicate that a fringed micelle type of crystallization takes place at these low temperatures. The transition from folded chain crystallization to fringed micelle crystallization may be due to a stiffening of the polymer chain below about 50°C, with a reduced rotational mobility of the phenyl groups on the chain. If very dilute solutions, below 0.5% by weight, are crystallized at these low temperatures no gels were formed but fibrous crystals are produced which could be observed under the polarizing microscope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.