Abstract
The crystalline morphology formed in binary blends of poly(ε-caprolactone)- block-polyethylene (PCL-b-PE) copolymers and PCL homopolymers has been examined using synchrotron small-angle X-ray scattering (SR-SAXS) and differential scanning calorimetry (DSC) as a function of the homopolymer fraction in the blend. The PE block crystallized first on quenching from a lamellar microdomain structure to set a hard lamellar morphology (PE lamellar morphology) in the blend, followed by the crystallization of PCL chains (i.e., PCL homopolymers + PCL blocks). Two binary blends were studied by considering the miscible state of PCL homopolymers in the microdomain structure: when the PCL homopolymers were uniformly mixed with PCL blocks, they formed a mixed crystal. When the PCL homopolymers were localized between PCL blocks in the microdomain structure, DSC results suggested the possible formation of separate PCL crystals in the PE lamellar morphology. The effect of the advance crystallization of PE blocks on the subsequent crystallization of PCL chains was discussed as compared with the crystalline morphology formed in PCL-block-polybutadiene copolymer/PCL homopolymer blends, where the crystallization of PCL chains started directly from a microdomain structure without forming the hard lamellar morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.