Abstract

The increasing global energy crisis and ecological risks in recent years have led to the interest in lignocellulosic fillers reinforced polymer composites. In this study, the nucleation ability of pine wood in polypropylene (PP) matrices was studied by differential scanning calorimetry. PPs with different melt flow index values (in range 3.2–25 g/10 min.) were used as the polymer matrix. Moreover, a new technique of wood treatment using γ‐irradiation was used. The experimental results clearly show that the nucleation activity of the wood particles is strongly dependent on the rheological parameter (e.g., MFI) of PP matrix. The composites containing PP matrix with lower MFI exhibited higher degree of crystal conversion, lower half‐times of crystallization, and higher crystallization temperatures. Moreover, the applied γ‐irradiation of wood resulted in a negative effect on the crystallization rate of PP matrix and a distinct deterioration of the nucleation ability of wood surface. The interesting differences in nucleation activity of wood have been interpreted in the context of polymer chains length and relaxation times during crystallization. This article will spotlight the nucleating efficiency of filler, which is critical in polymer processing e.g., optimization of injection molding cycle time of composite materials. POLYM. COMPOS., 36:1813–1818, 2015. © 2014 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.