Abstract
The crystallization of polymers is not, despite its importance in science and engineering, entirely understood due to the challenge of tracking the behavior of individual polymer chains in the crystallizing melt. However, increasing computational resources have brought the crystallization process within reach of molecular simulations, and several groups have published simulations of crystal nucleation and growth in polymers. Yet, these studies have focused on linear polymer chains, and no results have been reported on cross-linked polymers, which are common in everyday applications. Here, we perform molecular dynamics simulations of the homogeneous crystallization of cross-linked polyethylene at high undercooling. Large cross-link densities cause the crystallization to slow down and reduce the final degree of crystallization. As expected, cross-links are rejected from the crystals into the amorphous phase. We observe that at all cross-link densities the intercrystalline amorphous phase is characterized by a single distribution of free segment lengths (amorphous segments with no cross-links). The findings provide a basis for detailed computational studies of semi-crystalline cross-linked polymer systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.