Abstract

Asymmetric patchy particle models have recently been shown to describe the crystallization of small globular proteins with near-quantitative accuracy. Here, we investigate how asymmetry in patch geometry and bond energy generally impacts the phase diagram and nucleation dynamics of this family of soft matter models. We find the role of the geometry asymmetry to be weak, but the energy asymmetry to markedly interfere with the crystallization thermodynamics and kinetics. These results provide a rationale for the success and occasional failure of the proposal of George and Wilson for protein crystallization conditions as well as physical guidance for developing more effective protein crystallization strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.