Abstract

Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

Highlights

  • The use of porous silicon as intermediate layer for silicon thin film solar cells has attracted many research groups in the last decade [1,2,3]

  • We present a study on the metallization of porous silicon by immersion in Ni solution and the use of the obtained material as a substrate for the deposition and crystallization of amorphous silicon thin films intended for thin film solar cell application

  • Fourier transform infrared spectroscopy (FTIR) measurements are carried out to study the change in the chemical composition of porous silicon after immersion in Ni solution and to show in which form Ni is deposited on the porous surface

Read more

Summary

Background

The use of porous silicon as intermediate layer for silicon thin film solar cells has attracted many research groups in the last decade [1,2,3]. The second layer with high porosity is used to (1) prevent pore filling during silicon deposition, (2) act as a gettering barrier, and (3) make easy the separation process of the device. The use of porous silicon as a substrate for silicon thin film deposition has many advantages if compared with foreigner substrates such as glass or ceramics: porous silicon can act as a barrier that prevents the diffusion of impurities from the substrate to the film. It can support high temperatures required for solar cell processing (doping, metallization, etc.). The presence of Ni on the porous structure walls will play a crucial role both in the crystallization process and the back metallic contact quality that will be realized after the transfer process of the thin silicon solar cells

Methods
Results and discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.