Abstract

The crystallization of amorphous and porous Ca–Mg-silicates prepared by a sol–gel method is studied in the glass transition range during isothermal and continuous heating experiments. A starting material of diopside (CaMgSi 2O 6) composition was primarily studied because it is a reference system to study crystal nucleation and growth. The annealed products were characterized by X-ray diffraction and transmission electron microscopy. In the glass transition range, the crystallization is not congruent. It follows a systematic sequence in which the most Ca-rich silicates present in the phase diagram crystallize first. This trend does not obey equilibrium thermodynamics predictions. Instead, this sequence is the result of the decoupled mobilities of network-modifying and network-forming cations. The high surface/volume ratio of gels likely exacerbates this effect compared to compositionally comparable glasses. Altogether, the study shows that local dynamics controls kinetic phase transitions in the glass transition range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.