Abstract

The crystallization of amorphous diphasic Al2O3–SiO2 precursors doped with nickel has been studied by differential scanning calorimetry (DSC), XRD diffraction (XRD) and scanning and transmission electron microscopy (SEM, TEM) equipped with energy dispersive X-ray spectroscopy (EDS). Diphasic gels with constant atomic ratio (Al+Ni)/Si=3:1, where 0, 1, 2 and 3at.% of aluminum were replaced by nickel, have been prepared by hydrolyzing of TEOS in aqueous solution of aluminum nitrate. Crystallization of Ni-containing γ-Al2O3 preceded the crystallization of Al–Si spinel. Activation energy of 603±16kJmol−1 for crystallization of Ni-containing γ-Al2O3 was obtained in non-isothermal conditions. Ni-incorporated γ-Al2O3 transforms gradually with the temperature increase into Ni aluminate spinel, while Al–Si spinel reacts with amorphous silica forming mullite at about 1200°C. Rietveld structure refinement of phases present in the samples annealed at 1600°C and SEM-EDS and TEM-EDS analyses of related phases have shown that nickel predominantly crystallizes as NiAl2O4, but small amount of nickel is incorporated in mullite structure, as well as, dissolved in the glassy phase of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.