Abstract

Uranyl peroxide nanoclusters are an evolving family of materials with potential applications throughout the nuclear fuel cycle. While several studies have investigated their interactions with alkali and alkaline earth metals, no studies have probed their interactions with the actinide elements. This work describes a system containing U60 Ox30 , [((UO2 )(O2 ))60 (C2 O4 )30 ]60- , and neptunium(V) as a function of neptunium concentration. Ultra-small and small angle X-ray scattering were used to observe these interactions in the aqueous phase, and X-ray diffraction was used to observe solid products. The results show that neptunium induces aggregation of U60 Ox30 when the neptunium concentration is≤10 mM, whereas (NpO2 )2 C2 O4 ⋅ 6H2 O(cr) and studtite ultimately form at 15-25 mM neptunium. The latter result suggests that neptunium coordinates with the bridging oxalate ligands in U60 Ox30 , leaving metastable uranyl peroxide species in solution. This is an important finding given the potential application of uranyl peroxide nanoclusters in the recycling of used nuclear fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.