Abstract

Ribonuclease T1 was crystallized under various conditions. Form I crystals were produced by microdialysis against 53% (v/v) 2-methyl-2,4-pentanediol in 0.01 M sodium acetate, 0.05% 2'-guanylic acid (2'GMP) and 0.02% NaN3 (pH 6.2-7.2). These crystals are tetragonal, space group P41212 and contain two molecules per asymmetric unit; cell dimensions are a = b = 5.86 nm, c = 13.28 nm. Form IIa and form IIb crystals were obtained by microdialysis from a buffer of 0.01-0.05 M sodium acetate, 0.25-0.5% 2'GMP, 0.02% NaN3 and 2-5 mM calcium acetate (pH 4.0-4.4) in the presence of 50-75% (v/v) 2-methyl-2,4-pentanediol. These crystals are orthorhombic, space group P212121, and contain one molecule per asymmetric unit; cell dimensions are a = 4.66 nm, b = 5.02 nm, c = 4.04 nm (form I) and alpha = 4.44 nm, b = 5.00 nm, c = 4.03 nm (form II). Using high-performance liquid chromatography, it could be shown for all crystal forms that 2'-GMP is bound in the crystals. The molecular ratio between RNase T1 and 2'GMP was 0.9 for form II crystals and thus agreed with a 1:1 enzyme-nucleotide complex. Heavy-atom derivatives were produced with lead acetate for form IIa crystals and with uranyl acetate for from IIb crystals. Three-dimensional X-ray analysis of the RNase-T1 x 2'GMP complex is under way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call