Abstract

We have investigated the crystallization mechanism of the lithium disilicate (, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under , , and , were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call