Abstract

SiO2–TiO2 amorphous nanobeads with a TiO2 content up to 50 mol % were synthesized by sol–gel spray drying. Their crystallization during heat treatments was then characterized by in situ high-temperature techniques including X-ray diffraction, Raman spectroscopy, and particularly high-resolution transmission electron microscopy. Intrinsic nanoscale chemical modulations could be identified already in the as-prepared nanobeads and were shown to play a major role for the nonisochemical precipitation of TiO2 nanocrystals during heating experiments: the size and compositional contrast of such fluctuations progressively evolved and increased until the emergence of long-range ordering. The formation of TiO2 polymorphs occurred according to Ostwald’s rule of stages, with the metastable TiO2(B) phase acting as a precursor to stabilize anatase and rutile. The temporary appearance of TiO2(B) nanocrystals at early annealing stages was interpreted as the first direct experimental observation of subcritical crystalline nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.