Abstract
Ball milling was employed to produce Zr65Ag5Cu12.5Ni10Al7.5 glassy powder from pre-alloyed mixtures of crystalline intermetallic compounds. Differential scanning calorimetry (DSC) in isochronal as well as in isothermal modes was used to study the thermal stability and the crystallization kinetics of the glassy powder. The activation energy for crystallization was calculated using isothermal and isochronal DSC data as well as from viscosity measurements, which lead to values of the activation energy ranging between 298 and 314 kJ/mol. Johnson–Mehl–Avrami analysis shows that the transformation is a diffusion controlled three-dimensional process and the crystallization proceeds with increasing nucleation rate at annealing temperatures within the super-cooled liquid region. To test the effectiveness of the glassy powder as reinforcement in Al-based metal matrix composites, bulk specimens consisting of pure Al powder blended with 50 vol.% of Zr65Ag5Cu12.5Ni10Al7.5 glassy powder were synthesized by powder metallurgy. Room temperature compression tests reveal that the strength increases from 155 MPa for pure Al to 235 MPa for the composite with 50 vol.% of glass reinforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.