Abstract
The crystallization kinetics of Zr60Al15Ni25 bulk glassy alloy under isochronal and isothermal conditions has been investigated by differential scanning calorimetry (DSC). The microstructure of as-cast Zr60Al15Ni25 bulk glassy alloy is observed by high-resolution electron microscopy (HREM). It is found that there exist nanocrystals with a size of about 7 nm in the glassy matrix, which are not observed in the XRD image. The results of Kissinger analysis show that the effective activation energies for glass transition (457 kJ/mol) and crystallization (345 kJ/mol) are high, indicating that it has large thermal stability against crystallization. The crystallization of Zr60Al15Ni25 bulk glassy alloy under isothermal annealing can be modeled by the Johnson-Mehl-Avami equation. The crystallization kinetics parameters show that the isothermal crystallization starts from the growth of the pre-existing nanocrystals and the crystallization process is diffusion-controlled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.