Abstract

The crystallization reaction of Zr65Ni25Ti10 (at. %) metallic glass was studied by using differential scanning calorimetry (DSC) at constant heating rate. Two distinct exothermic peaks were observed from the continuous heating DSC curves, implying the crystallization process undergoes two different stages. The crystallization kinetic parameters, including activation energy (E), Avrami exponent (n) and frequency factor (K0), were determined with non-isothermal analysis method based on the DSC data. The values of E are 267.353 KJ/mol and 224.293 KJ/mol, n 4.0±0.1 and 6.8±0.1, K0 4.4±0.05E+20 and 2.0±0.08E+15, for the first and second crystallization stage, respectively. The results suggest that the crystallization mechanism is governed dominantly by interface controlled growth with constant nucleation rate for the first crystallization stage and with increasing nucleation rate for the second stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.