Abstract

Metastable liquid water, obtained by heating its hyperquenched glassy state above its glass→liquid transition temperature, crystallizes to cubic ice. Kinetics of this crystallization has been studied by Fourier transform infrared spectroscopy by determining the change in the spectra of stretching vibrations of the decoupled OD oscillator in 3.6 mole % HOD in H2O. The crystallization kinetics follows the equation x=[1−exp(−ktn)] and is diffusion controlled. Annealing at a temperature below its glass→liquid transition temperature alters this kinetics as the grain–growth process begins to control the early stages of crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.