Abstract

The conversion of amorphous stannosilicate dry gel into crystalline molecular sieve with MFI structure (Sn-MFI) was achieved by dry gel conversion (DGC) method at 413, 443 and 473K. For comparison purpose, Sn-MFI molecular sieve with similar SiO2/SnO2 mole ratio was also obtained by hydrothermal crystallization route. Crystallization curves were established by conducting time dependant studies on progressive crystallization processes for both the systems. The values of activation energy of nucleation (En), activation energy of crystallization (Ec), and their pre-exponential factors (lnAn, lnAc respectively) were calculated from Arrhenius plots. Compared to the hydrothermal method, shorter induction period was observed when DGC method was employed. Both the En (49.70kJ/mol) and Ec (52.82kJ/mol) for DGC method were found to be lower than that of the En (55.70kJ/mol) and Ec (60.23kJ/mol) for hydrothermal method. The kinetics parameters viz. K and q were derived from kinetic expressions and DGC method showed higher value of K and lower value of q compared to hydrothermal crystallization method at identical temperature. Various DGC method parameters such as water content at the bottom of autoclave and SiO2/SnO2 mole ratio have shown the influence on the kinetics of crystallization of Sn-MFI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.