Abstract

The present article deals with the differential thermal analyses (DTA) study of Se–Te glasses containing Sn. DTA runs are taken at six different heating rates (5, 10, 15, 18, 20, and 22 K min−1). The crystallization data are examined in terms of modified Kissinger, Mahadevan method, and Augis and Bennett approximation for the non-isothermal crystallization. Results of DTA under non-isothermal conditions on the glasses of the Se80Te20--xSnx (x = 3 and 9) are reported and discussed at different heating rates. The glass transition temperatures (Tg), the onset crystallization temperatures (Tc), and the peak temperature of crystallization (Tp) were found to be dependent on the compositions and the heating rates. From the dependence on heating rates of (Tg) and (Tp) the activation energy for glass transition (Eg) and the activation energy for crystallization (Ec) are calculated and their composition dependence discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call