Abstract

Amorphous ribbons of the alloy Fe73.5Si13.5B9Cu1Nb1V2 were prepared by the standard single copper wheel melt spinning technique in the air atmosphere. The crystallization kinetics of amorphous ribbons was analyzed by non-isothermal differential scanning calorimetry (DSC) measurements. The crystallization activation energies of amorphous ribbons calculated by using Kissinger model were 364 and 337 kJ/mol for the first and the second crystallization, respectively. The Avrami exponent n was calculated from the Johnson-Mehl-Avrami (JMA) equation. The value of the Avrami exponent showed that the crystallization mechanism in the non-isothermal primary crystallization of amorphous ribbons was all shapes growing from small dimensions controlled by diffusion at decreasing nucleation rate. The variation of soft magnetic properties of nanocrystalline Fe73.5Si13.5B9Cu1Nb1V2 alloy powder cores as a function of milling times has been investigated. It is found that the effective permeability of the cores shows high frequency stability and decreases with the increase of milling times. The quality factor increases with increasing frequency in lower frequency range, and reaches a maximum at the frequency of 80 kHz then decreases gradually with increasing frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.