Abstract
Transparent glasses of CaBi2B2O7 (CBBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition (T g) and the crystallization parameters (crystallization activation energy (E cr) and Avrami exponent (n)) were evaluated under non-isothermal conditions using DSC. The heating rate dependent glass transition and the crystallization temperatures were rationalized by Lasocka equation for the as-quenched CBBO glasses. There was a close agreement between the activation energies for the crystallization process determined by Augis and Bennet and Kissinger methods. The variation of local activation energy (E c(x)) that was determined by Ozawa method increased with the fraction of crystallization (x). The Avrami exponent (n(x)) decreased with the increase in fraction of crystallization (x), suggesting that there was a changeover in the crystallization process from the bulk to the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.