Abstract

Glass samples belonging the TeO2 - Ta2O5 - Bi2O3 (TTB) system are prepared by conventional melt-quenching technique and the corresponding vitreous domain is identified. A crystallization study of the 80 TeO2 - 10 Ta2O5 - 10 Bi2O3 glass composition versus temperature shows structural transitions from glass to the stabilization of an unreported translucent anti-glass phase and eventually to a fully transparent crystalline ceramic in both the visible and infrared ranges. The structure and microstructure of the anti-glass and ceramic phases are characterized by Powder X-Ray Diffraction, Electron Back-Scatter Diffraction, Transmission Electron Microscopy and Raman spectroscopy. The optical properties of undoped and Er3+-doped transparent samples are also discussed. Up-conversion green emission band shows that the glass intensity is about 2 and 4 times more intense than that of the anti-glass and the ceramic, respectively. Furthermore, a large spectral bandwidth of 105 nm is found in the anti-glass sample. The advantageous spectroscopic characteristics found here, together with the good thermal stability of these samples, suggest that the anti-glass phase has potential applications as amplification medium for the generation of ultrashort (femtoseconds) pulses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.