Abstract
We consider finite discrete systems consisting of two different atomic types and investigate ground-state configurations for configurational energies featuring two-body short-ranged particle interactions. The atomic potentials favor some reference distance between different atomic types and include repulsive terms for atoms of the same type, which are typical assumptions in models for ionic dimers. Our goal is to show a two-dimensional crystallization result. More precisely, we give conditions in order to prove that energy minimizers are connected subsets of the hexagonal lattice where the two atomic types are alternately arranged in the crystal lattice. We also provide explicit formulas for the ground-state energy. Finally, we characterize the net charge, i.e. the difference of the number of the two atomic types. Analyzing the deviation of configurations from the hexagonal Wulff shape, we prove that for ground states consisting of [Formula: see text] particles the net charge is at most of order [Formula: see text] where the scaling is sharp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.