Abstract

The crystallization of organic semiconductor thin films from an amorphous phase often results in a broad range of microstructures and molecular arrangements that in turn critically impact the electronic properties of the film. Here we present a diffuse-interface model of thin film crystallization that accounts for out-of-plane tilting of the kinetically favored crystalline orientation as well as the simultaneous appearance of multiple polymorphs. By adjusting the relative thermodynamic stability of grains oriented with the fast-growing axis either parallel or perpendicular to the substrate, crystallization can be made to occur in the form of either commonly observed spherulites or more complex morphologies such as sectors and centers. Furthermore, tuning the relative kinetic coefficients and free energies of multiple polymorphs can result in a spherulite of one crystal structure embedded within a spherulite of another crystal structure. A parametric study of the effects of anisotropy, densification, time-varying treatments, and substrate patterning reveals a wide variety of morphologies that are possible in these thin films, driven by a combination of kinetic and thermodynamics effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.