Abstract

Semicrystalline block copolymers provide us with a fascinating model for studying the kinetics of crystallization. We performed the simultaneous measurement of small‐ (SAXS) and wide‐angle (WAXS) x‐ray scattering (SWAXS) with differential scanning calorimetry (DSC), or SWAXS with small‐angle light scattering (H v‐SALS). The specimen used was polyethylene‐b‐poly(ethylene propylene) (PE‐b‐PEP) with the molecular weight of 44,200. The PE block has the melting point (T m) at 108°C. We observed the time evolution of crystallization in the lamellar microdomains of PE‐b‐PEP after a temperature drop from 180°C (≫T m) to a variety of temperatures slightly below T m. The exothermic signal was observed by DSC right after the temperature drop, while the four‐leaf‐clover pattern of H v‐SALS and the SAXS peaks due to the lamellar microdomains were observed several minutes after the temperature equilibration. The WAXS peaks of (110) and (200) reflection were almost simultaneously detected with the H v‐SALS and the SAXS peaks at crystallization temperature of 100°C. With the crystallization temperature closer to T m, the WAXS crystalline signals showed up with longer time lag after the H v‐SALS and the SAXS peaks began to appear. Interestingly, these phenomena are interpreted as that long‐range order of density fluctuation up to the order of micrometers was generated prior to the formation of crystals with partially ordered phase rather than the instantaneous crystalline nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.