Abstract

We have studied the confined crystallization behaviour of poly(ethylene oxide) (PEO) in the electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO, where PS was present as the major component. The size and shape of PEO domains in the nanofibers were considerably different from those in the cast films, presumably because of the nano-dimensions of the nanofibers and the extensional forces experienced by the polymer solution during electrospinning. The phase-separated morphology in turn influenced the crystallization behaviour of PEO in the blend nanofibers. At a PEO weight fraction of ≥0.3, crystallization occurred through a heterogeneous nucleation mechanism similar to that in cast blend films. However, as the PEO weight fraction in the blend nanofibers was reduced from 0.3 to 0.2, an abrupt transformation of the nucleation mechanism from the heterogeneous to predominantly homogenous type was observed. The change in the nucleation mechanism implied a drastic reduction of the spatial continuity of PEO domains in the nanofibers, which was not encountered in the cast film. The melting temperature and crystallinity of the PEO crystallites developed in the nanofibers were also significantly lower than those in the corresponding cast films. The phenomena observed were reconciled by the morphological observation, which revealed that the phase separation under the radial constraint of the nanofibers led to the formation of small-sized fibrillar PEO domains with limited spatial connectivity. The thermal treatment of the PS/PEO blend nanofibers above the glass transition temperature of PS induced an even stronger confinement effect on PEO crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.